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We study the effect of the interplay between the Rashba and the Dresselhaus spin-orbit couplings on the
transverse electron focusing in two-dimensional electron gases. Depending on their relative magnitude, the
presence of both couplings can result in the splitting of the first focusing peak into two or three. This splitting
has information about the relative value of spin-orbit couplings and therefore about the shape of the Fermi
surface. More interesting, the presence of the third peak is directly related to the tunneling probability �“mag-
netic breakdown”� between orbits corresponding to the different sheets of the Fermi surface. In addition,
destructive interference effects between paths that involve tunneling and those that do not can be observed in
the second focusing condition. Such electron paths �orbits� could be experimentally detected using current
techniques for imaging the electron flow opening the possibility to directly observe and characterize the
magnetic breakdown effect in this system.
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I. INTRODUCTION

Transport properties of two-dimensional electron �2DEG�
and hole gases can be affected in very peculiar ways by the
spin-orbit �SO� coupling. The unusual properties of spin
transport of these systems are seen as promising tools for the
development of new spintronic devices,1 which would allow
us to coherently control and manipulate the electrons’ spin.
This triggered an intense activity in the field during the past
years. Among the SO-related effects in 2DEGs, it is worth
mentioning the proposal of a spin filtering transistor,2,3 the
Aharonov-Casher oscillation in mesoscopic rings,4,5 and the
spin Hall effect.6–21

In 2DEGs made either from heterostructures or from
quantum wells, there are two dominating forms of the SO
coupling.22 The Rashba SO coupling, which arises from the
asymmetry of the confinement potential of the 2DEG, and
the Dresselhaus SO coupling, which arises from the lack of
inversion symmetry of the crystal structure. Both types of
SO couplings are present in general and their relative mag-
nitude depends on the structure and the materials used to
make the 2DEG. The SO couplings are relatively weak in
AlGaAs-GaAs structures and quite strong in In- or Sb-based
semiconductors. There are two important differences be-
tween the Rashba and Dresselhaus SO couplings. On the one
hand, the magnitude of the former can be externally con-
trolled by a gate voltage,4,23 providing a interesting new
knob to control transport properties. On the other hand, the
Rashba coupling is isotropic while the Dresselhaus coupling
depends on the orientation of the crystal axes. These two
different sources of the SO coupling can be experimentally
determined using different techniques.24–28

Both �linear� SO couplings lead to similar electronic and
transport properties when one dominates. However, very in-
teresting effects arise when the two couplings have a similar
magnitude. In particular, when both couplings are equal the
spin and the momentum decouple. This effect has been pro-
posed as a way to build up a spin transistor in disordered

systems.3 In addition, it was argued that in that case the
system contains unusually long-lived spin excitations.29 In-
dications of the presence of these excitations have been ob-
served very recently.30 Also, the magnetic-field anisotropy of
the spin-relaxation length in long wires made from 2DEGs in
AlGaAs has been attributed to the closed values of the two
couplings.31

It is therefore interesting to look for new alternatives
where the effect of the competition between the Rashba and
Dresselhaus couplings on the transport properties can be
measured directly. In this work, we analyze the effect of such
competition on the transverse electron focusing signal.32,33 In
Ref. 34 it was predicted that SO coupling leads to the split-
ting of the odd focusing peaks. Since then, this splitting has
been observed in different samples35,36 and discussed by sev-
eral authors.37–39 Here, we show that the splitting of the fo-
cusing peaks can be used to map out the nontrivial shape of
the Fermi surface of the 2DEGs when both types of linear
SO couplings are present and have a similar magnitude. In
addition, we found that the focusing experiment can clearly
show the tunneling between cyclotron orbits, in direct anal-
ogy to the magnetic breakdown in bulk materials.40,41

To our knowledge, this is the first example where the
magnetic breakdown between different cyclotron orbits
could be directly observed. This could be done by using, for
instance, the imaging technique developed by Westervelt and
co-workers.42–46

II. SPIN-ORBIT COUPLING IN TWO-DIMENSIONAL
GASES

A. Bulk eigenstates

The Hamiltonian of a 2DEG in the presence of both
Rashba and Dresselhaus SO couplings is given by

H =
p2

2m�
+

�

�
�py�x − px�y� +

�

�
�px��x� − py��y�� , �1�

where p= �px , py� is the momentum operator, � and � are the
Rashba and Dresselhaus coupling parameters, respectively,
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and ��i� are the Pauli matrices. The axes x� and y� corre-
spond to crystallographic directions while x and y are arbi-
trary directions chosen in a convenient way—note that the
Rashba term is isotropic and therefore independent of the
axes choice.

Hamiltonian �1� can be easily diagonalized by proposing a
solution in the form of a plane wave. The eigenfunctions and
eigenvalues are

�k
��r� =

1
�2A

eik·r��1

ei� � , �2�

	�k� =
�2k2

2m�
� ���kx + �ky�2 + ��ky + �kx�2. �3�

Here, tan �=−��kx+�ky� / ��ky +�kx�, A is the system’s area,
and we choose x=x� and y=y�. Figure 1 shows the corre-
sponding Fermi surface for different values of the ratio � /�.
The arrows indicate the spin orientations of the eigenstates.

The competition between the Rashba and Dresselhaus
SOs originates a deviation of the Fermi surface from the
circular shape. For �= �� the Fermi surfaces recover a cir-
cular shape shifted from the 
 point �there is a perfect nest-
ing between the two surfaces� and the spin orientation be-
comes independent of k—nevertheless, this case has
interesting spin properties.3,29,47,48 For �� /���1 the two dif-
ferent Fermi surfaces do not cross each other. The minimum
and maximum distances between them in k space are given
by �k�= 2m�

�2 �����. As we will show, these properties have
important consequences on the transverse focusing signal.

When an external magnetic field is applied perpendicular
to the sample, Landau levels are formed. In that case, a Zee-
man term must be included in Hamiltonian �1� and p should
be replaced by p+ �e /c�A, with A as the vector potential. A
closed analytical solution for arbitrary values of � and � is
not known �see however Refs. 49 and 50�. For �=0, how-
ever, a straightforward calculation51 shows that the
energy spectrum is given by En

�=��cn 	E0
2+ �� / lc�22n
1/2,

where n�1, �c=e�B� /m�c is the cyclotron frequency,

lc= �� /m�c�1/2 is the magnetic length, and E0
=��c /2−g�BBz /2 is the energy of the ground state �n=0�.
In the limit of strong Rashba coupling or large n,
�� / lc��2n�E0, the spin of the eigenstates lies in the plane of
the 2DEG. These eigenstates have a cyclotron radius given
by

rc
2 � 2nlc

2. �4�

Then, states with different n, and consequently different cy-
clotron radii, coexist within the same energy window.34 In
fact, it is easy to verify that the difference between the two
cyclotron orbits is

�rc �
2�

��c
=

��k�

m��c
= lc

2�k�. �5�

Equivalent results are found in a semiclassical treatment of
the problem.35,37,38,52

Eventually, if both � and � were nonzero, one might hope
to be able to gather information on the shape of the Fermi
surface by measuring �rc. As we show below, this is indeed
the case when transverse electron focusing is used to map out
�rc as a function of crystal orientation or the strength of the
Rashba coupling.

B. Transverse electron focusing

The usual geometry for transverse focusing experiments
consists of two quantum point contacts �QPCs� at a distance
L, which are coupled to the same edge of a 2DEG �see Fig.
2�. Electrons emitted from QPC I �injector� are focalized
onto the QPC D �detector� by the action of an external mag-
netic field perpendicular to the 2DEG. In a classical picture,
the electrons ejected from the injector are forced to follow
circular orbits due to the Lorentz force. If the applied mag-
netic field has some arbitrary value, the electrons miss the
detector and simply follow skipping orbits against the edge

FIG. 1. �Color online� The Fermi surfaces for � /�=0, 0.5, 0.75,
and 1 are shown in �a�, �b�, �c�, and �d�, respectively. The arrows
indicate the spin orientation of the corresponding eigenstate.

FIG. 2. �Color online� Scheme of the focusing experiment in the
presence of SO coupling �we take �=0 for simplicity�. An electron
injected at QPC I can follow one of two different orbits �O1 and O2�
depending on its spin orientations. These two orbits lead to the
splitting of the first focusing peak since the corresponding focusing
fields B1,1 and B1,2 are different. After bouncing off the edge the
electron that followed the smaller �bigger� orbit continues in the
bigger �smaller� one so in both cases the electron arrives to the
detector D for the same focusing field B2, leading to a single peak.
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of the sample. However, for some particular values of the
external field �Bn�, such that the distance between the QPCs
is n times the diameter of the cyclotron orbit, with n as an
integer number, the electrons reach the detector. In such a
case, there is a charge accumulation in the detector that gen-
erates a voltage difference across QPC D. This gives voltage
peaks as the external field is swept through the focusing
fields Bn.32,53,54

In a quantum-mechanical description, the scattering states
in the two QPCs are coupled by the Landau levels of the
2DEG. As the Landau eigenstates have a characteristic
length �the cyclotron radius rc� that depends on the applied
field, there is also a matching condition for B=Bn. In this
context, the main features of the magnetic-field dependence
of the measured signal are contained in the transmission T
between the two QPC �Ref. 33�—typical experimental setups
include also one or two Ohmic contacts at the bulk of the
2DEG which are used to inject currents and measure
voltages.32

As shown in Refs. 34 and 35, in systems with either
Rashba or Dresselhaus spin-orbit coupling �but not both� the
first focusing peak splits in two. Such splitting, for �=0, is
given by Eq. �5� or, in terms of the magnetic field, by
�B=4�m�c /�eL, which is independent of B. Furthermore,
each peak corresponds to a different spin projection of the
electron leaving the emitter.34 Once again this can be under-
stood using a classical picture plus the fact that there are two
Fermi surfaces, even though the semiclassics is not
trivial.38,52,55–59

This simple mechanism, which is able to spatially sepa-
rate the two spin orientations of a electron beam, was re-
cently used60 to study the current’s spin polarization associ-
ated with the “0.7” anomaly in QPCs and it was also
suggested61 as a tool to study spin polarization of the flowing
current in adiabatic QPCs due to SO.62

C. Numerical solution

As mentioned above, we are interested in calculating the
conductance between the two lateral QPCs. In the zero-
temperature limit this conductance is just e2 /h times the
transmission coefficient T between the two contacts evalu-
ated at the Fermi energy. Even in the absence of the spin-
orbit interaction, it is not possible to obtain an analytical
solution of the problem when there is an applied perpendicu-
lar magnetic field. Hence, we calculate T�EF� numerically
using a discretized system �“tight-binding-like” model�
where the leads or contacts can be easily attached.
The Hamiltonian of the system can then be written as
H=H0+HSO, where

H0 = �
n,�

	�cn�
† cn� − �

n,m�,�
tnmcn�

† cm� + H.c. �6�

Here, cn�
† creates an electron at site n with spin � �↑ or ↓ in

the z direction� and energy 	�=4t−�g�BBz /2, t=�2 /2m�a0
2,

and a0 is the effective lattice parameter which is always cho-
sen to be small compared to the Fermi wavelength. The sum-
mation is made on a square lattice, where the position of the
site n is nxx̂+nyŷ, where x̂ and ŷ are unit vectors in the x and

y directions, respectively. The hopping matrix element tnm is
nonzero only for nearest-neighbor sites and includes the ef-
fect of the diamagnetic coupling through the Peierls
substitution.63 For the choice of the Landau gauge tn�n+x̂�
= t exp�−iny2�� /�0� and tn�n+ŷ�= t with �=a0

2B the magnetic
flux per plaquete and �0=hc /e the flux quantum.

The second term of the Hamiltonian describes the spin-
orbit coupling,

HSO = �
n

��ycn↑
† c�n+ŷ�↓ − �y

�cn↓
† c�n+ŷ�↑

+ e−iny2��/�0	�xcn↑
† c�n+x̂�↓ − �x

�cn↓
† c�n+x̂�↑
� + H.c.

�7�

where �R=� /2a0, �D=� /2a0, �x= ��R+ i�De−i2�� and
�y =−��De−i2�+ i�R�, and � is the angle between the
crystallographic axis x� and the x axis �normal to the edge of
the 2DEG�. In the second term the Peierls substitution is
made explicit.

Each lateral contact is described by a narrow stripe with a
width of N0 sites and, for simplicity, no spin-orbit coupling.
They represent point contacts gated to have a single active
channel with a conductance 2e2 /h �for details see Ref. 34�.
To obtain the conductance between the two contacts we cal-
culate the retarded �advanced� Green’s function matrix, Gr�a�.
Because of the lift of the spin degeneracy the Green’s func-
tion between two sites i and j has four components Gi�,j��.

The zero-temperature conductance is then obtained using
the Landauer formula, G12= �e2 /h�Tr	
�1�Gr
�2�Ga
, evalu-
ated at the Fermi energy. Here 
�N�= i	�N

r −�N
a 
 is the “cou-

pling matrix” to the contact N and �N
r�a� the corresponding

self-energies of the retarded �advanced� propagator.

III. SPLITTING OF THE FOCUSING PEAKS

A. Dependence with the crystal orientation

Figure 3 shows the splitting of the first focusing peak as a
function of the crystal orientation �defined by the angle ��
with respect to the edge of the sample. The splitting shows a
simple oscillatory behavior, whose angle dependence can be
fully understood in terms of the shape of the Fermi surface
and a simple semiclassical argument presented below. It is
worth mentioning that the semiclassical description of the
orbits is far from trivial in the presence of spin-orbit
coupling.37,38,52,55–59 In particular, in the presence of both
Rashba and Dresselhaus couplings, there is an extra compli-
cation due to the possibility of having mode conversion
points �points where the spin-orbit field cancels�.52,55–59 This
will be important for the effect discussed in Sec. III B.

Here, however, we can argue that the SO coupling is suf-
ficiently strong so that the spin follows the momentum adia-
batically. We can then use the usual semiclassical description
for a band structure given by Eq. �3�. In that case, the semi-
classical equations of motion are given by

ṙ = v =
1

�
�k	�k�, k̇ =

e

�c
v � B . �8�

For B=Bẑ, the solution of these equations implies that
k�t� moves along the Fermi surface while r�t�

MAGNETIC BREAKDOWN OF CYCLOTRON ORBITS IN… PHYSICAL REVIEW B 78, 115312 �2008�

115312-3



=r�0�+ ẑ� 	k�t�−k�0�
lc
2 and, as usual, the real space orbit is

related to the one in k space by a � /2 rotation and a scale
factor lc

2. Since in our case there are two different Fermi
surfaces, there are two real-space orbits whose radius differ-
ence is then given by �r���= lc

2�k���, where �k���
= �2m� /�2���2+�2−2�� sin 2� is the orientation-dependent
difference between the two wave vectors of the two Fermi
surfaces �see Fig. 3�. Here, in determining the cyclotron ra-

dius, we have neglected the fact that the velocity is not par-
allel to k �normal injection does not always correspond to
ky =0�. In the limit �k��� /kF�1, as it is the case here, this is
an excellent approximation.

Then, the peak position is given by B����
=Bf�����B��� /2, where Bf���� 2c

eL
�2Em� and

�B��� =
4m�

�eL
��1 + ��

�
�2

− 2��

�
�sin 2� �9�

is the magnetic-field splitting of the first focusing peak. This
is indicated in Fig. 3 with dashed lines.

The agreement with the exact numerical result is excel-
lent, showing that the simplified semiclassical picture is very
accurate in this regime. From Eq. �9�, we see that a measure
of the peak splitting is a direct way to measure � and �. One
possible way to do it would be to use different sets of pairs
of QPCs oriented in different angles with respect to the crys-
tallographic axis.

B. Additional peak: “magnetic breakdown”

Let us now consider a different situation where the crys-
tallographic orientation is kept fixed �we take x�=x so that
�=0� but the magnitude of the spin-orbit coupling �� or �� is
changed. This is shown in Fig. 4. When one of the SO cou-
plings dominates the two peaks’ structure is clearly seen.
Consider the case of small � /� in Fig. 4; as � /� increases
the splitting also increases in agreement with Eq. �9�. How-
ever, for � /��1, a third peak develops at B=Bf. The am-
plitude of this peak increases at the expenses of the other two
and becomes the only peak for �=�. The fact that there is
only one peak when �=� is quite clear from the fact that in
that case the two Fermi surfaces are circular and have the
same radius.

FIG. 3. �Color online� �a� Splitting of the first focusing peak as
a function of the crystallographic angle � for EF=23 meV, m�

=0.055m0, L=1.5 �m, �=15 meV nm, and � /�=1 /3. The dashed
lines correspond to Eq. �9� and Bf =165 mT; �b� and �c� show the
focusing peaks for the minimum and maximum splitting; �d�
scheme of the Fermi surface indicating the difference �k���.

FIG. 4. �Color online� Magnetic breakdown between different cyclotron orbits. �a� Evolution of the first focusing peak as a function of
� and � when fixing the greater in 15 meV nm. The splitting evolves as expected from Eq. �9� until the two couplings have similar values.
Close to this point a third peak appears as a consequence of the quantum tunneling between the two orbits. For �=� we have only one orbit,
�k=0, and then only one peak; �b�, �c�, and �d� show the focusing peaks for different values of the SO coupling parameters; �e� focusing
signal as a function of � for � /�=0.75; �f� fitting of the amplitude of the central peak with Eq. �12�.
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The transition from two to three peaks can be understood
in terms of tunneling between cyclotron orbits, in the same
spirit as the magnetic breakdown between band orbits in bulk
metals.40 For ���, the “gap” in k space between the two
Fermi surfaces, that is, the minimum distance between them
�k−=2m���−�� /�2, is very small and the magnetic field can
induce a tunneling transition between both orbits. Therefore,
if f�B−B�� describes a single focusing peak centered around
B�, the complete focusing signal is expected to behave as

�f�B − B+� + f�B − B−���1 − p� + 2pf�B − Bf� , �10�

where p is the tunneling probability, which can be estimated
using a Landau-Zener-type argument. Following Refs. 41
and 64, a rough estimate for p is

p = exp�− �lc
2� �k−

3

a + b
� , �11�

where 1 /a and 1 /b are the curvature radii of the two Fermi
surfaces in the tunneling region, i.e., close to the minimum
gap point. For � /��1, this can be approximated by

p = exp�−
�m�kFlc

2

�2

�� − ��2

���
� = exp�− �

�x − 1�2

�x
� ,

�12�

with x=� /� and �=�m�kFlc
2� /�2. This expression fits the

numerical data 	see Fig. 4�f�
 up to a factor of 0.6 in �.
Notice that the fitting function is not a Gaussian and that p is
independent of the crystallographic angle �; it only depends
on the local properties of the Fermi surface around the mini-
mum gap.

At this point it is worth mentioning that the magnetic
breakdown of the cyclotron orbits has previously been used
to explain the anomalous behavior of the magnetoresistance
oscillations in systems with spin-orbit coupling.41 This inter-
pretation has been challenged very recently22,65,66 arguing
that the dynamics of the spin cannot follow, in that case, the
momentum. Our case, however, is different as we are in the
strong spin-orbit limit and the magnetic breakdown interpre-
tation is appropriate.

In order to explicitly show the magnetic breakdown of the
cyclotron orbits, we plot in Figs. 5�a� and 5�b� the conduc-
tance Ginj,tip from the injector to a conducting tip, located
above the 2DEG, as a function of the tip position �see Ref.
34 for details� and for two different crystallographic orienta-
tions, �=0.75� and 0.725�, respectively. This essentially
corresponds to calculate the probability for an electron in-
jected through QPC I to reach a given point in the 2DEG and
hence brings information about the orbits followed by the
electrons. The images obtained in this way are similar, al-
though with a much better resolution, that the ones we would
have obtained by simulating the presence of a tip as a scat-
terer �the experimental technique developed in Refs. 42–44
and 46�.

Although it is difficult to distinguish the orbits along the
full path, three different orbits are apparent in both cases
close to the first bouncing point, which correspond to the

first focusing condition. As each of these orbits has a spin
projection associated with it, we plot in Figs. 5�c� and 5�d�
the difference between the spin resolved conductances,
Ginj↑,tip↑−Ginj↑,tip↓, where the spin-quantization axis corre-
sponds to ŷ. This allows us to follow the direct orbits and the
ones that involve tunneling. For this, it is important to take
into account that for �=0, we would observe a change of
sign of Ginj↑,tip↑−Ginj↑,tip↓ in the middle of the orbit as the
spin rotates from �↑ � to �↓ �. Here, the fact that there is an
orbit in which this quantity does not change sign is an indi-
cation of the tunneling from one orbit to the other. To support
this interpretation, we also show the semiclassical orbits
�dashed lines� expected for an electron injected with a given
spin polarization along the y axis. To include the orbits that
involve tunneling, we simply change from one orbit to the
other at the position related to the minimum gap in k space
�see Fig. 7�.

An interesting effect occurs at the second focusing peak
�second bounce in Fig. 5�. In such a case, the peak structure
results from the interference of several paths and hence de-
structive interference can result for particular values of the

FIG. 5. �Color online� Imaging of the cyclotron orbits �see text�.
�a� and �b� show the total conductance Ginj,tip for two different
crystallographic orientation, �=0.75� and 0.725�, respectively,
� /�=0.75 and L=1.5 �m. Note that in both cases there are three
peaks at the first bounce against the edge of the sample while in the
second bounce the central peak is missing �due to interference�
only in �a�; �c� and �d� show the spin resolved conductances,
Ginj↑,tip↑−Ginj↑,tip↓. The absence of a sign change along the orbit is a
signature of the magnetic breakdown.
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parameters. In particular, we see in Fig. 5 that for
�=0.75� the central peak is missing. In order to understand
the origin of this effect, we show in Fig. 6�a� the focusing
signal as a function of � /� for �=0 and the same micro-
scopic parameters as in Fig. 4. For almost all values of � /�
there is a single peak �as in the �=0 case�. However, for
� /��0.75, when the first focusing peak shows a three peak
structure �see Fig. 4�, the central peak disappears while two
satellite peaks emerge. When setting � /�=0.75 this effect
has an oscillatory behavior as a function of the crystal orien-
tation. This is shown in Fig. 6�b� 	see also Fig. 4�e� for a
comparison with the first focusing peak structure
.

As mentioned above, the origin of this modulation of the
amplitude of the second focusing peak is the interference
between the different orbits that contribute to the signal.
These orbits, for an electron injected with its spin pointing
along the y axis, are shown in Fig. 7. The regions in real
space where tunneling between the two orbits occurs are in-
dicated with circles. The position of these regions depends
on the crystal orientation. Figures 7�a� and 7�b� show the
orbits that contribute to the central peak of the second focus-
ing peak, while Fig. 7�c� shows the overlap of the two orbits.
Figures 7�d� and 7�e� show the orbits that contribute to one
of the satellites in the second focusing peak. The letters A, B,
C, and D identify the different locations of the bounces and
then the different focusing peaks.

As the phase acquired due to the tunneling between orbits
is independent of �, in order to account for the angle depen-
dence of the interference pattern we need to include the or-
bital phase acquired by the electron along the different paths.
In addition, we notice that after the second tunneling event
the two orbits in Fig. 7�c� follow exactly the same path.
Since they accumulate the same orbital phase from there to
the next bouncing point if they interfere destructively right
after the tunneling, they will do it along the final part of the

orbit. This is clearly seen in Fig. 5 where for �=0.75� the
orbit corresponding to the central peak in the second focus-
ing peak has disappeared completely after the second tunnel-
ing event.

The central peak amplitude is then given by

A = ��Pd + �Pte
i�2�t+�orb��2, �13�

where Pd and Pt are the probability of the direct and tunnel-
ing paths, respectively 	paths �a� and �b� in Fig. 7
, �t is the
phase acquired by the electron due to each tunneling event
�we assume them to be equal�, and �orb=�1−�2 is the differ-
ence of the orbital phases of the two paths. In the semiclas-
sical picture, the orbital phase of each path is given by
1 /��Cp ·dr, where the integral is done along the classical
path C, p is the canonical momentum, and r the position
vector satisfying

ṙ =
�H

�p
, ṗ = −

�H

�r
. �14�

In the strong spin-orbit limit, the Hamiltonian H is given
by38,57,59

H =
P2

2m�
� ���Px� + �Py��

2 + ��Py� + �Px��
2, �15�

with P=p+ �e /c�A. Using a symmetric gauge, it is straight-
forward to show that 1 /��Cp ·dr= �1 /2lc

2��rC
2 d�, where rC is

the radius of the corresponding cyclotron orbit. The orbital
phase difference between the two paths is then

�orb =
1

2lc
2��

0

�̃

�r1
2 − r2

2�d� − �
�̃

�

�r1
2 − r2

2�d�� , �16�

with �̃ as the angle where tunneling occurs �see Fig. 7� and
ri, i=1,2, as the radii of the orbits. This integral can be
calculated analytically for arbitrary values of � and � in

FIG. 6. Focusing signal at the second focusing peak �a� as a
function of � ��� for � ���=15 meV nm and �=0. As expected
there is only a single peak, except for � /� or � /��0.75 where
there is a destructive interference between the different orbits
shown in Fig. 7. Notice this point corresponds to the case where
there are three peaks at the first focusing condition �b� as a function
of the crystallographic angle � for � /��0.75.

FIG. 7. �Color online� Semiclassical orbits �in real space� con-
taining two bounces for an electron injected at the point indicated
by the arrow with its spin polarized along the edge of sample. �a�
Direct orbit �no tunneling� and �b� orbit with two tunneling events,
indicated by the circles. Here �̃ defines the angle where tunneling
occurs; �c� superposition of orbits �a� and �b�. Notice that after the
second tunneling event the two orbits overlap; �d� and �e� orbits that
involve one tunneling event; �f� superposition of all previous orbits.
The letters A, B, C, and D identify the different locations of the
bounces.
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terms of elliptic integrals. However, for � /��1, it can be
approximated by

�orb = 4lc
2kF

2���m�

�2 cos�� −
�

4
� . �17�

Figure 8 shows the total central peak amplitude obtained
numerically as a function of �. Since for ��� /4 the satel-
lite peaks merge into the central peak, in Fig. 8�b� we plot
the central peak amplitude subtracting the satellite contribu-
tions. This can be done because the orbits that contribute to
the central peak for all angles are those where the electron
arrives with the same spin orientation it had at the injector. A
fitting of the peak amplitude, using Eq. �13� with Pd and Pt
as the only fitting parameters, is shown in Fig. 8�b�. The
dotted line was obtained using the approximated expression
for �orb 	Eq. �17�
, while the dashed line corresponds to the
exact expression 	Eq. �16�
. Once again, the agreement is
very good, given further support to the magnetic breakdown
interpretation.

It is easy to verify that for the case of the satellite peaks,
�orb takes the same value than in the case of the central peak.
However, as in this case both interfering paths contain a
tunneling event, �t drops out. Then, the fact that there is
destructive interference in the central peak when the satel-
lites have their maximum values indicates that �t�� /2 as
expected from the magnetic breakdown picture. In the above
analysis, we did not consider explicitly the phase acquired by
the spin degree of freedom. In general, such phase has a
nontrivial dependence with the geometry of the orbit.52,55–59

Here, since we assumed that the spin follows the SO field,
that is, it rotates around the z axis, this phase is not relevant.
However, special care should be taken when considering the
effect of the tunneling between orbits as the spin may have
an additional rotation. As this case involves a mode conver-

sion point, a semiclassical analysis of this phase is not
simple—we are not aware of a simple way to estimate it.
Therefore, the fact that our results indicate that the phase due
to tunneling is just the usual � /2, is an indication that the
spin phase is 0 or �. Further work is needed to clarify this
point.

IV. SUMMARY

We have shown that the interplay between the Rashba and
Dresselhaus couplings introduces new effects on the trans-
verse electron focusing. The most interesting aspect is the
appearance of additional structure of the focusing peaks re-
lated to the magnetic breakdown of the cyclotron orbits when
the two SO couplings have similar magnitude: the two sheets
of the Fermi surface lead to different paths in real space and,
as we have shown, the tunneling between different paths
generates new structure in the focusing peaks. In addition,
interference effects between these paths lead to an oscillatory
behavior of the second focusing peak amplitude as a function
of the orientation of the crystallographic axes. We have
shown that the observed interference effects are dominated
by the orbital phase accumulated along the different paths.
This is so because in this regime, the spin adiabatically fol-
lows the momentum and the associated Berry phase cancels
out while the spin phase due to tunneling seems to be irrel-
evant here. One could however envision a different regime
where the spin dynamics would be important for which a
deeper understanding of the spin dynamics during the tun-
neling as well as of the semiclassical description of the prob-
lem is needed.

The magnetic breakdown of the orbits as well as the in-
terference effect could be directly observed using some of
the techniques recently developed for imaging the electron
flow.42–45 In this work we have been mostly concerned with
the dependence of the different effects on the crystal orien-
tation. In practice, the experimental observation is a bit cum-
bersome as it requires us to tailor different QPC setups in
different orientations. An alternative to this could be the use
of in-plane magnetic fields to modulate �k− as well as k+ and
k−. For instance, for ���, an in-plane field applied along

the x�̂−y�̂ direction will essentially control the magnitude of
the gap in k space and then the probability for tunneling. On

the other hand, in-plane field along the x�̂+y�̂ direction can
be used to modulate k+ and k− and then the interference
pattern. This also has the advantage of keeping k++k− con-
stant and then the focusing condition.

Finally, it is interesting to note that while the splitting of
the focusing peaks allows for the spatial separation of the
spin components as in a Stern-Gerlach device,34,35 the pres-
ence of the magnetic breakdown between orbits provides a
way to separate a given spin component in a superposition of
two spatially separated orbits.
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FIG. 8. �Color online� �a� Amplitude of the second focusing
peak �indicated by a dashed line in Fig. 6� as a function of the
crystallographic orientation. The oscillation is due to quantum in-
terference between different paths �see Fig. 7�; �b� same as above
but without taking into account the contribution from the satellite
peaks. The dashed �dotted� line corresponds to a fitting using the
exact �approximated� value of �orb, given by Eq. �16� 	Eq. �17�
.
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